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Abstract. In this paper we analyze a widely employed test function for global optimization, the
Griewank function. While this function has an exponentially increasing number of local minima as
its dimension increases, it turns out that a simple Multistart algorithm is able to detect its global
minimum more and more easily as the dimension increases. A justification of this counterintuitive
behavior is given. Some modifications of the Griewank function are also proposed in order to make
it challenging also for large dimensions.
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1. Introduction

The Griewank function, first introduced in (Griewank, 1981), has been employed
as a test function for global optimization algorithms in many papers. It is defined
as follows
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The global minimum value is 0 and the global minimum is located in the ori-
gin, but the function also has a very large number of local minima, exponentially
increasing with n. A typical choice for the n value in the literature is n = 10.
Figure 1 shows the graph of the function in the two-dimensional case over the
box [—20, 20] x [—20, 20]. The fast increasing number of local minima suggests
that the global minimum becomes extremely difficult to detect as n increases. Is
this really the case? In what follows we present the results obtained by a simple
Multistart algorithm. We recall that, at each iteration, the Multistart algorithm
samples a uniform random point over the feasible region and start a local search
from it. In Table 1 we report the expected number of local searches to first detect the
global minimum forn = 2, 4, 6, 8, 10, 20. The local search procedure is the limited
memory BFGS (see Nocedal, 1980). Surprisingly, it appears to be very difficult to
detect the global minimum for small » values but it becomes extremely easy for
large n values (even for the value n = 10, usually employed in the tests). In the
following section we will give an explanation of this counterintuitive behavior and
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Figure 1. The graph of the two-dimensional Griewank function over the box
[—20, 20] x [—20, 20].

Table 1. Expected number of local searches to first hit the global minimum

n 2 4 6 8 10 20

Expected number > 10000 > 10000 767 31 5 1

some modifications of the function will be proposed in order to make it challenging
also for large n values.

2. Why the Griewank function becomes easier as the dimension increases
We first notice that the Griewank function (1) can be naturally split as follows
Griewank,, (x) = f,(x) + h,(x) + 1,

where
n 2

X
) =) 2000

i=

is a quadratic convex function, whose local (and global) minimum is located in the
origin (the same position of the global minimum of the Griewank function), while
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is an oscillatory nonconvex function. Basically, the oscillations introduced by func-
tion &, are superimposed over the function f, and give rise to the large number of
local minima.

Now we consider the behavior of many local search methods when applied to
f». The reason why we omit the function %, will become clear later. Many local
search methods are able to return very quickly the local and global minimum of
function f,. Indeed, in view of Theorem 3.4.2 in (Fletcher, 1987) it holds that,
if exact line searches are employed, each method in the Broyden family (which
includes as special cases the DFP and BFGS methods) starting with the identity
matrix I as an approximation for the Hessian, is equivalent to the Fletcher—-Reeves
conjugate gradient method when applied to a quadratic function and thus reaches a
stationary point of the function after m iterations, where m is the number of linearly
independent vectors in the sequence

g1, Hgi, Hgy, ...

(g1 denotes the gradient of the function at the starting point x; and H is the Hessian
of the quadratic function). Since the Hessian of the function f, is /2000 we can
conclude that m = 1, i.e., each of the above mentioned methods returns the local
and global minimum of f, after a single iteration. We underline that the results in
Table 1 have been obtained with the limited memory BFGS procedure which is not
included in the above-mentioned methods. However, the limited memory BFGS
procedure and the BFGS procedure are equivalent during the first iterations. But
now let us reintroduce the function 4, previously omitted. We need to modify all
the computations above by adding to all the gradient values the gradient values of
the function #,,, whose i-th component is the following

[Vh,(x)] L sin ( i ) ﬁ cos ( il )
G Vi J=1j#i Vi

We notice that all the components of V#,, are obtained as the product of n values
belonging to the interval [—1, 1]. As n increases, it becomes more and more likely
that the product of such values is very small so that the gradient of 4, can be
neglected with respect to the gradient of f,. Equivalently, the part of the feasible
region where the gradient of the Griewank function is significatively different from
the gradient of f,, becomes smaller and smaller as n increases. This explains the
results in Table 1: as n increases the limited memory BFGS procedure applied
to the Griewank function behaves more and more similarly to the same procedure
applied to function £, and the global minimum (which is the same for the Griewank
function and function f,,) is more and more easily detected.

It could be argued that the Griewank function becomes easier as n increases
only if we employ a local search procedure such as the limited memory BFGS
procedure or any of the other local search procedures previously mentioned (Broy-
den family, conjugate gradient). It is undoubtely true that, as shown above, these
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Figure 2. A one-dimensional illustration of the landscape of the Griewank function for large
n values.

local search procedures are particularly well suited for this problem, but the same
reasoning which explains their success suggests that this function is not a very
challenging one also for other algorithms, at least for large values of n. Indeed,
since the region where the function values and the gradient values of the Griewank
function are significatively different from those of function f, becomes narrower
and narrower as n increases, algorithms can hardly distinguish, on the basis of the
observed values, between the two functions. Therefore, any algorithm which is able
to solve in a reasonable amount of time convex problems and, in particular, the one
represented by function f,,, is very likely able to approach the global minimum of
the Griewank function in a comparable time. Figure 2 represents a one-dimensional
function which is not the Griewank one for n = 1 but has properties similar to those
of the Griewank function for large values of n: there are very narrow regions where
the function drops down or rise up but in the largest part of the feasible region the
function is basically not distinguishable from the underlying convex function f,.

2.1. MODIFICATIONS OF THE GRIEWANK FUNCTION

In this subsection we discuss how the Griewank function could be modified in order
to make it a very challenging test function also in large dimensions. In order to
achieve this aim we need to increase the incidence of the nonconvex and oscillatory
part. For instance, we can modify the terms in the product in such a way that they



A NOTE ON THE GRIEWANK TEST FUNCTION 173

are never below the value 1. We can redefine the Griewank function as follows

Griewankyogiiea(®) = fu(x) — [ | [2 + cos (i)} +3".
i1 Vi

or, if we want to avoid the numerical problems due to the often very large values
of the product by taking the logarithm of the product, as follows

Griewank2 icieg(¥) = fu(x) — Z log [2 + cos (%)] +nlog(3). (2)
i=1 !

Note that the global minimum of both modifications is still located in the origin and
its value is still equal to 0. As expected, the Multistart algorithm is now unable to
detect, within 10 000 local searches, the global minimum of both the modifications
above for n = 10 and for n = 20. However, we underline a negative aspect of
modification (2). The function proposed in (2) is a separable one, i.e., it can be
written as the sum of »n one-dimensional functions. Some results in the literature
on separable test functions are excellent but misleading. Indeed, the proposed ap-
proaches modify only one or few variables at each iteration. In the most extreme
case where only a single variable is modified at each iteration, this means that the
approach is performing n optimization of one-dimensional functions, so that the
complexity of the n-dimensional problem is comparable to n times the complexity
of a one-dimensional problem. In order to recover nonseparability we can modify
the Griewank function as follows

Griewank? ogiiea(x) = f,(x) — > _log [2+ cos (Hx))] +nlog3).  (3)
i=1

where H is a nonsingular matrix. Note that modification (3) include as a special
case (2), but if H is nondiagonal, then the resulting modification of the Griewank
function is nonseparable. Figure 2.1 illustrates the graph of a two-dimensional
instance over the box [—10, 10] x [—10, 10], where

H=[} 11} 4)

V2o V2
together with the underlying graph of function f,,.

3. Conclusion

In this paper a widely employed test function for global optimization algorithms,
the Griewank function, has been analyzed. It has been observed that, while the
number of local minima increases exponentially with the dimension »n, the function
becomes very easy to optimize, for large n values, by a simple Multistart algorithm.



174 M. LOCATELLI

10 -10

Figure 3. A two-dimensional instance of modification (2) over the box [—10, 10] x [—10, 10]
with &, given in (3) and H given in (4), and the underlying function f;.

An explanation of this fact has been given. The same explanation suggests that not
only the Multistart algorithm considered in this paper, but also other optimization
algorithms can relatively easily approach the global minimum of this function for
large n values. Finally, some modifications of the function have been proposed in
order to make it a challenging one also in high dimensions.
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